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SUMMARY

Clipping of narrow extrema and distortion of smooth profiles is a well-known
problem associated with so-called "high-resolution" nonoscillatory convection
schemes. In this report, a strategy is presented for accurately simulating highly
convective flows containing discontinuities such as density fronts or shock waves,
without distorting smooth profiles or clipping narrow local extrema. The convection
algorithm is based on non-artificially-diffusive third-order upwinding in smooth
regions, with automatic adaptive stencil expansion to (in principle, arbitrarily)
higher order upwinding locally, in regions of rapidly changing gradients. This is
highly cost-effective because the wider stencil is used only where needed - in isolated
narrow regions. A recently developed universal limiter assures sharp monotonic
resolution of discontinuities without introducing artificial diffusion or numerical
compression. An adaptive discriminator is constructed to distinguish between
spurious overshoots and physical peaks; this automatically relaxes the limiter near
local turning points, thereby avoiding loss of resolution in narrow extrema.
Examples are given for one-dimensional pure convection of scalar profiles at
constant velocity.
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INTRODUCTION

Accurate simulation of highly convective flows continues to be one of the most
challenging problems in computational mechanics. The inability to adequately
simulate simple scalar profiles even in the superficially straight-forward case of one-
dimensional pure convection at constant velocity has been referred to as the
"ultimate embarrassment" for computational mechanics [1]. Classical (second-order
central) schemes are able to handle very smooth profiles fairly satisfactorily; i.e.,
when the convected variable has small curvature (spatial second derivatives) - or,
more specifically, when the shortest Fourier components have wavelengths of many
mesh-widths. But a sudden change in gradient (l"nvolving locally high curvature or
short wavelengths) excites spurious unphysical oscillations due to inherent spatial
(third-derivative) dispersion terms in the truncation error. By contrast, first-order
upwinding [2] can resolve a step profile monotonically, giving a spreading error-
function in the idealized case; but the inherent spatial second-derivative (artificial
diffusion) terms in the truncation error so totally overwhelm any physical diffusion
that even smoothly varying profiles are unrecognizable after a short time.

Second-order upwinding [3] represents a significant improvement. In this case,
leading order truncation error is again a dispersive third derivative but, compared
with second-order central, fourth- (and higher even-) derivative dissipation terms
may be stronger under certain conditions, thus tending to somewhat dampen disper-
sive oscillations. By averaging second-order upwinding with the canonical explicit
second-order central scheme [4], Fromm [3] proposed a convection algorithm in _
which the leading phase error of the upwind scheme approximately cancels the
lagging phase error of the central scheme. However, using the same computational
stencil, it is a simple matter to eliminate the third-derivative dispersion term
entirely.

The QUICKEST scheme [5] is the canonical explicit third-order upwind con-
vection algorithm of this type; physical diffusion terms are modelled to a consistent
order. In this case, the leading truncation-error term is a dissipative (but not diffu-
sive) spatial fourth derivative. This is an important attribute. Numerical experi-
ence over the past decade or more has led to the following rule of thumb: leading
truncation error in a convection algorithm should be dissipative (an even spatial
derivative) rather than dispersive (odd derivative) but shouldbe of higher order than
other modelled physical terms such as diffusion (especially if these terms are sup-
posed to be small). Thus, even-order schemes fail the first criterion (central schemes
are worse in this respect because dissipative terms are small or non-existent). First-
order upwinding fails the second criterion. Third-order upwindingis therefore the
lowest order method satisfying both criteria for the convection-diffusion equation.
This is especially important for convection-dominated flows, as will be seen in the
model test problems shown later.

Unfortunately, third-order upwinding does not seem to have been widely
adopted by the computational-fluid-dynamics (CFD) community. Apparently for no
other reasons than tradition and personal inertia, many CFD researchers regard
second-order central schemes as the norm. This is appropriate for physical problems
dominated by even spatial derivatives, such as diffusion, wave-motion, and elas-
ticity, but is singularly inappropriate for the first-derivative convection term in fluid
mechanics [6]. A similar situation occurs with higher order odd derivatives such as
the spatial third derivative in the Korteweg-deVries equation [7]. Another large
segment of the CFD community (especially in heat-transfer applications) has
adopted first-order upwinding as the "safest" form of convection modelling. This
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apparently stems from the influence of the Imperial College school through descen-
dants of the TEACH code [8] using the "Hybrid" convection scheme [9] or variants of
the so-called "exponential difference scheme" [10], including the "power-law"
approximation described in a well-known textbook [11]. The difficulty with such an
approach is very simple: using these methods, one is not simulating the correct
nhvsical nroblemV A very-high-Reynolds-number (convection-dominated) problem is

arb'itrari_y replaced by an un_physical problem in which the effective component grid
Reynolds number can never be greater than 2, whereas the physical grid Reynolds
number might be hundreds or thousands (or effectively infinite).

There is also a serious logical flaw in such methods: sophisticated (and expen-

sive) multi-equation turbulence models are usually used at each time or iteration
step simply as a diagnostic to switch off their own effects in the turbulent-transport
terms of the governing equations, replacing these terms with artificial viscosityor
diffusivity [12]. Specifically, the turbulence model is used to calculate the t_urou-
lent) component grid Reynolds (or Peclet) number at each control-volume face; when
this quantity exceeds 2 (in the case of Hybrid) or about 6 (for the exponential or
power-law schemes), physical turbulent transport is replaced by artificial numerical
viscosity (or diffusivity). The short-comings of first-order methods are well known,
having been shown theoretically [13-15] and through comparative benchmark
problems [16-17]. Their continued wide-spread popularity is perhaps another
manifestation of the ultimate embarrassment.

Although third-order upwinding is a more rational basis for CFD, certain
fundamental problems remain. Perhaps the most obvious is the fact that unphysical
overshoots and undershoots are excited each side of a step discontinuity in purely
convective flow [5]. And, of course, short-wavelength resolution is limited by the

third-order accuracy. Switching to higher order (upwind) schemes can increase
accuracy of resolution but cannot reduce the overshoot problem (in fact, it gets

slightly worse). Monotonic high resolution schemes can be constructed for simu-
lating step discontinuities. This is usually achieved by using a subtle nonlinear
blending of a (traditional) second-order central base scheme with first-order
upwinding (introducing enough positive artificial diffusion locally to maintain
monotonicity) and first-order downwinding (with inherent negative artificial diffu-
sion to locally enhance artificial "compression"). This strategy is the basis of so-
called "shock-capturing" and "total-variation-diminishing (TVD)" schemes [18], and
can be related to earlier multi-step flux-correction first/second-order schemes [19]

and single-step nonlinear flux-limiting schemes such as the second-order MUSCL
scheme [20] - a monotonized version of Fromm's method - and the third-order
EULER scheme based on exponential upwinding [21,22]. Unfortunately, the best
step-resolution (supercompressive) schemes such as Superbee [23], Super-C, or
Hyper-C [24], tend to convert smooth profiles into a series of steps and plateaus. In
other words, the negative diffusivity responsible for artificial compression of discon-
tinuities tends to concentrate moderate-curvature regions into localized unphysical

sharp changes in gradient. All such first/second-order schemes strongly "clip"
narrow extrema.

Recently, a universal limiter (UL) has been designed which can be applied to
arbitrarily high order transient interpolation modelling (TIM) of the advective
transport equations (ATE). This "ULTIMATE" CFD scheme [24] has several attrac-
tive properties Step resolution is monotonic and can be made competitive with the

A L " _ . . • •'L • • "

best supercompresslve shock-capturing schemes without introducing artlficml dlf-
fusivity or viscosity, simply by locally increasing the order of accuracy, using adap-
tive stencil expansion (so that the location of the wider stencil automatically moves



along with high-curvature regions of the profile). Since numerical compression is
avoided, smooth profiles are not corrupted. However, one annoying problem
remains: very narrow extrema are slightly clipped relative to what can be achieved

with an unlimited higher order (upwind) scheme. Near sudden changes in.gradient,
the limiter needs to be "on", but near local physical extrema (but not spurious over-
shoots), it needs to be switched "off" automatically. The problem is one of pattern
recognition. This paper describes a simple adaptive discriminator which can identify
well-defined local narrow .physical extrema and automatically switch off the
universal limiter in such regnons, but keep it activated in regions where unphysical
overshoots or very short-wavelength spurious oscillations would otherwise occur.

(i)

(ii)

(iii)

The overall strategy is as follows:

In "smooth" regions (identified by small values of local absolute'curvature of
the convected variable), the unlimited third-order upwind QUICKEST scheme

is used; this accounts for the overwhelming bulk of the flow domain - especially
in multidimensional flows.

In relatively large-gradient or strong-curvature regions, automatic adaptive
stencil expansion occurs locally, using (in principle, arbitrarily) higher order
upwinding with the universal limiter activated.

Near well-defined local extrema, identified by the automatic discriminator, the
limiter is switched off, thus allowing an appropriate degree of resolution
depending on the narrowness of the extremum.

The next section summarizes the basic ideas underlying the universal limiter.
Then four challenging scalar test profiles are considered under conditions of pure
one-dimensional convection at constant velocity. Results for a number of solution
methods are shown in order to demonstrate some of the difficulties mentioned above
with respect to various manifestations of the ultimate embarrassment. Construction

of the automatic discriminator is then briefly described. Finally, results are shown
for a cost-effective variable-order scheme consisting of QUICKEST in smooth

regions, ULTIMATE seventh-order upwinding in moderate-curvature re_ions and
ULTIMATE ninth-order upwinding in high-curvature or high-gradient regmns.

UNIVERSAL LIMITER

Details of the ULTIMATE scheme can be found elsewhere [24]; however, a brief
description of the universal limiter is given here for convenience. Figure 1 shows a
one-dimensional control volume, suggesting the local behaviour of the convected
variable (p in terms of locally normalized variables [22]

= (¢ - ¢v)/(¢o" ¢v) (1)

where (l), is the (unnormalized) upstream node value and qbl) the downstream
value. NSte from Equation (1) and the figure that, in terms of normalized variables,

_v =0 and 7o =1 (2)

Let _r be the normalized face value on the downstream control-volume face;
simila/-ly, _, isthe normalized upstream face value. Figure 1 shows interpolative

constraints on _f and qb,_; i.e.,



and

(Pc = = 1 (3)

o < _ <_. (4)_-- hi _ C

where _c" is the normalized central node value. The inequalities given by (3) are

two necessary conditions on _f prescribed by the universal limiter when local
behaviour is monotonic across the three nodes shown in Figure 1, i.e., the two nodes
straddling the face in question and the adjacent upstream node. However, this is not
enough to guarantee computational monotonicity. For this, consider the explicit

update step for _c under conditions of constant velocity (positive to the right in
Figure 1). In terms of normalized variables, ....

(5)
where c - uAt/Ax is the Courant number.

In order to maintain monotonicity (locally), 7o must satisfy

_'uTM -<-",'c_'"+' --<7. "+' (6)

Taking conservative worst-case conditions implies

0 < _.+l < 1 7)
---- .it. C

The right-hand inequality is assured by the interpolative constraints on _f and 7. ;
the left-hand inequality implies, using Equation (5),

_ =<_hi+ _"/c (8)

Once again, a worst-case estimate for _hi (= 0) results in an additional (time-step)

constraint on _'f:

'_f <- "_c" Ic (9)

Inequalities (3) and 9_ constitute the universal limiter constraints on _f withrespect to _c n when v" is within the monotonic range:

0<'_ n<= (Pc = 1 (10)

Outside of this range (i.e., _n" < 0 or ~ "(Pc > 1), various strategies can be devised.
Figure 2 shows one simple po§sibility:

_f = _c" (nonmonotonic range) (11)

together with the monotonicity constraints. This is a graphical portrayal of the
universal limiter. Using this limiter, the procedure is as follows:

(i) Construct an explicit estimate for the unnormalized control-volume face value,

(Pf, by any (in principle, arbitrarily high order) method.

(ii) Compute the corresponding normalized value, _f, according to Equation (1).
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(iii)

(iv)

(v)

(vi)

If the point (_'c", _'r) lieswithin the shaded region of Figure 2, proceed with the

unadjusted face value, ¢bf.

If the point lies outside this region, replace _f with the nearest allowable _f
value at the same _ nC"

Reconstruct Cr = _u + _'f (¢D" CV)"

Repeat for each control-volume face.

Note that this strategy is significantly different from that used in currently
popular shock-capturing and TVD schemes [18]. In such schemes, using the present
normalized-variable terminology, ..

where _'7 is a single-valued monotonic function of _" passing through the points
(0,0), (0._, 0.75), and (1,1). This restricts such metho_ls to second (or, at best) third
order accuracy in space, and second order in time. Figure 3 shows the functional

form of _f_(_,') for three well-known methods: Roe's Minmod and Superbee [23],
and van Leer_s MUSCL [20]. As commonly used in shock-capturing schemes, the
TVD limiter [25] can be described by

_c "<: _f_ =-< min(2_c" ,1) (13)

• II

in the monotonic range, with _/ = _c n elsewhere. These constraints, together with
Equation (12), represent muck more restrictive conditions than those of the uni-

versal limiter [24]. An important point to stress is that the universal limiter can be
used with arbitrarily high order (in both space and time) explicit methods whereas
the usual TVD strategy is restricted to essentially second order.

CONVECTION OF SCALAR PROFILES

Consider one-dimensional constant-velocity pure convection (i.e., no diffusion)
of a scalar profile initially given by

_(x,0) = _o(X) (14)

After time t, the exact solution is the initial profile translated by a distance
where u is the convecting velocity; i.e.,

ut,

¢(x,t) = ¢o(x-ut) (15)

Figure 4 shows the exact solution of four test profiles under uniform convection to
the right. Discontinuity resolution is tested by a simple step rather than the square
wave used by some authors [25] (at best, a square wave simply gives twice as much
information as a step; for the more dispersive schemes, oscillations produced by the
square-wave's step-up can interfere with those produced by the step-down, thus

producing a confusing interaction pattern). Smooth behaviour is represented by an
isolated sine-squaredwave 20Ax wide; there is no discontinuity in value or
gradient, but there is a discontinuity in curvature at each side of the profile. A semi-
ellipse 20Ax wide is very challenging because of a combination of sudden and
gradual changes in gradient. A narrow Gaussian with o = 1.94Ax has been chosen
to test narrow peak resolution.
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In the following simulations, the Courant number for all cases is

c : 0.45 (16)

Calculations are run for 100 time-steps, so that exact solutions should have shifted
45 mesh-widths to the right. The exact solutions are shown for reference in each
case. All of the schemes have been programmed in conservative control-volume
form, so that "mass" is conserved (to machine accuracy) in all cases. Upstream

(_ = 1) and downstream (¢ = 0) boundaries are sufficiently far away (beyond the
region shown in the figures) that they do not interfere with the solutions. To get
some idea of how far the profiles have moved, note that the three maxima are each

30Ax apart. Thus, for example, the initial position of the Gaussian peak was half-
way between the final positions of the sine-squared and semi-ellipse maxima.

Figure 5 shows the results of using first-order upwinding. Because of strong
artificial diffusion (spatial second derivative) in the truncation error, the computed
profiles have strongly interacted. Individually, the step simulation would look like a
spreading error-function, whereas the other profiles soon degenerate into spreading
(and amplitude-decaying) Gaussians, since all short-wavelength components in the
original profiles are quickly damped out.

If one defines the grid Peclet number as

Pa = uAx/D (17)

where D is the physical diffusion coefficient, it is clear that the physical problem
under consideration corresponds to infinite PA" AS is well known [26], first-order
upwinding for infinite P. is indistinguishabl_ from any higher order method with
an effective grid Peclet nu_mber given by

Pa* = 2/(1-c) (18)

In other words, for transient problems, first-order upwinding introduces artificial
numerical diffusion of the form

D = uAx(1 - c)/2 (19)
11 l.llrl

Such artificially diffusive results should be recognized as being totally unacceptable.
It is indeed rather surprising that such inaccurate methods are still the industry
standard in many branches of computational engineering, especially numerical
convective heat transfer [27,28].

Figure 6 shows results for the explicit second-order central Lax-Wendroff [4]
scheme. In this case, there is a large phase lag due to the spatial third-derivative
term in the truncation error. Only the smooth (sine-squared) profile bears any
resemblance to the corresponding exact solution. Clearly, for highly convective
flows, the explicit Lax-Wendroff method is very disappointing for all but the
smoothest of profiles. The situation is not improved by using explicit second-order
upwinding, shown in Figure 7. In this case, the third-derivative truncation-error
terms are of opposite sign to those of the Lax-Wendroff method, resulting in phase-
lead dispersion. For Courant numbers near 0.5, the individual second-order upwind
results are almost a reflection of the Lax-Wendroffprofiles.



Implicit second-order convection schemes are not necessarily better than
explicit methods. The so-called "Crank-Nicolson-type" convection scheme [26] -
defined by analogy with the well-known method for the diffusion equation [29] - is
actually worse than explicit methods in the purely convective case, because there are
strong phase-lag dispersion terms and no (even-derivative) dissipation terms in the
truncation error. The highly oscillatory nature of this method is seen in Figure 8.
The second-order implicit linear-finite-element method [26], shown in Figure 9,
again has no dissipation but gives somewhat better results than other second-order
methods because the leading third-derivative dispersion term is smaller.

Clearly, it would seem somewhat more felicitous to design a high-convection
scheme in which the oscillatory third-derivative dispersion term in the truncation
error were entirely eliminated. This was achieved over ten years ago in a simple
explicit formulation known as the QUICKEST scheme [5]. In this case, leading trun-
cation error is a small (fourth-derivative) dissipation term which strongly damps any
dispersive tendencies of the non-zero fifth-derivative term without corrupting the
modelled physics, viz.: the absence of physical (second-derivative) diffusion terms.
Figure 10 shows a dramatic improvement over the dispersive second-order methods.
Note particularly the good phase behaviour (which is relatively insensitive to
Courant number). For reference, Figure 11 shows results for an explicit fourth-order
central method [24]. Phase-lagdispersion in this case stems from the leading fifth-
derivative truncation error (which is only lightly damped by higher order dissipa-
tion). Results are only slightly better than those of the best second-order method.

At the risk of belabouring the point, the above results seem to indicate fairly
clearly that third-order upwinding represents a much more rational basis for CFD
[6] than first- or second-order methods or higher order central schemes. As
mentioned previously, there are still two serious short-comings, both evident in
Figure 10: (i) unphysical undershoots or overshoots near regions of rapid change in
gradient (high curvature); (ii) a limit to short-wavelength resolution. The first of
these deficiencies can be overcome by applying the universal limiter; Figure 12
shows the resulting ULTIMATE QUICKEST computation. Step resolution is
monotonic and comparable to that of MUSCL, Figure 13, a limited form of Fromm's
method. (One should note that at c = 0.5, Fromm's method is equivalent to
QUICKEST [24] ). But it is clear that MUSCL tends to clip and flatten local extrema
more strongly. This is directly linked to the more restrictive conditions imposed by
the commonly used "TVD" limiter, given by (13).

The second deficiency of third-order upwinding can, of course, be corrected by
using higher order (upwind) methods. The strategy proposed here is to use an
appropriate higher order method locally, with third-order upwinding in relatively
"smooth" (low-curvature) regions. For reference, Figure 14 shows results for
(unlimited) ninth-order upwinding [24] used globally; ninth-order appears to be
necessary to fully capture the peak of the narrow Gaussian. But, of course, this is an
unlimited scheme, and undershoots and overshoots are excited near discontinuities.
ULTIMATE ninth-order, Figure 15, eliminates the oscillations and gives very tight
step-resolution, but again introduces slight clipping at extrema. If one could
somehow arrange to automatically switch off the limiter near local extrema (while

keeping it active near discontinuities), a very desirable convection scheme would
result. This is the job of an adaptive discriminator which can distinguish between
well-defined local physical extrema and short-wavelength spurious oscillati0ns.
Note that long-wavelength numerical oscillations, such as those occurring in second-
order simulations - which might otherwise "confuse" the discriminator - present no
problem (because they are excluded from the basic scheme).
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CONSTRUCTION OF THE DISCRIMINATOR

The following algorithm attempts to distinguish between artificial numerical

peaks, such as those potentially occurring near the step or the base of the semi-
ellipse, and true physical extrema, such as those of the exact profiles in the test cases
studied. Artificial peaks would be associated with short-wavelength numerical

oscillations, with rapidly changing value, gradient, and curvature; as mentioned
above, long-wavelength numemcal oscillations are excluded from the third/higher
order algorithm. If a local extremum is associated with short-wavelength oscilla-
tions, the discriminator chooses the limited algorithm; however, if the curvature is of
the same sign in adjacent regions, the discriminator relaxes the limiter constraints
at the extremum and the immediate upstream and downstream adjacent nodes.

In setting up the convective fluxes (for the right-face of each CV cell), consider
an increasing-i "DO-loop" sweep. For the discriminator, choose a stencil of seven

points: .(1)_.3- (1),.2, (Pi,-1, _b_,._i+l, (1)i+2, ¢i+3" Then compute the differences between
eacn pair o_consecuuve points:

D1 = (dpi.2,-¢i.3), D2 = ((_i.i - d_,.2),..., D6 = (dpi+3- _i+2) (20)

For convenience, assume there is a local maximum; a minimum requires reversal of
some of the subsequent inequalities. Limiter constraints are active unless otherwise
stated. The algorithm proceeds as follows:.

(i) Check if D1 and D2 are both positive and D3 and D4 both negative; if not,

go to step (iii); if they are, then:

; if true, switch to an unlimited version at(ii) Check if 1921</911 and 1931<
the current /-value and skip the remaining steps; otherwise:

(iii) Check if D2 and D3 are both positive and D4 and D5 bothnegative; if not,
go to step (v); if they are, then:

(iv) Check if ID3I </D21 and ID41 < ID51; if true, switch to an unlimited version at
the current /-value and skip the remaining steps, otherwise:

(v) Check if D3 and D4 are both positive and D5 and D6 both negative; if not,
keep limiter constraints active; if they are, then:

(vi) Check if ID4[ < ID31 and 1951 < ID6[ ; if true, switch to an unlimited version at
the current /-value; if not, proceed with the limiter constraints active.

Figure 16(a) shows a sketch of a case in which the discriminator would keep the
universal limiter activated; in Figure 16(b), the limiter constraints would be
removed at each of thepoints shownby a hollow circle. The discriminator routine is
by-passed unless one of(p ÷., (1)i, or (l)i. is a local extremum. As noted above, limiter
relaxation occurs (if at all) _n groups _" three points, with the discrete extremum in
the middle.

AI)APTIVE STENCIL EXPANSION

The ultimate convection scheme proposed here uses the unlimited QUICKEST

(third-order upwind) algorithm in smooth non-steep regions; i.e., wherever the
average (right-face) absolute "curvature'

CURVAV = 0.5 1(1),+2" ¢,+, - qb, + (21)



and "gradient"

GRAD = I_b,+_ - _l (22)

are both less than pre-assigned thresholds, and provided [24]

0.2 _-< _c < 0.8 (23)

If CURVAV exceeds THC1 or the larger THC2 , the algorithm automatically
switches locally (at the CV face in question) to ULTIMATE seventh- or ninth-order

Winding, respectively. If GRAD exceeds THG it locally switches directly to
TIMATE ninth-order upwinding. This order-switching strategy is sketched in

Figure 17. Also, if the limits expressed in (23) are locally exceeded, the limiter
constraints are activated for the basic third-order scheme. Near local extrema, the

discriminator automatically relaxes the limiter constraints, as described in the
previous section. Clearly, the (dimensional) threshold constants need to be chosen
carefully so as to capture the desired degree of accuracy without "overkill" in terms
of cost; this requires some experimentation for optimization; a more universal
(nondimensional) procedure is currently being explored.

Adaptive stencil expansion is a very cost-effective strategy because the wider-
stencil computations are performed only where needed - at a relatively small
number of grid points in narrow regions, by definition. This is even more effective in
two and three dimensions. Figure 18(a) shows results for the complete algorithm;
the small arrows show where the automatic discriminator has relaxed the limiter

constraints (at this particular time-step). Figure 18(b) shows the corresponding
distribution of GRAD, and 18(c) that of CURVAV. Finally, Figure 18(d) shows the
local order of the algorithm to be used (at the next time-step) for the threshold
constants chosen. It should be clear that the locations of the limiter-relaxation

points and the order-switches move along with the profiles automatically, as time
progresses.

CONCLUSION

A cost-effective strategy for high-convection modelling has been introduced.
The algorithm is based on the (third-order upwind) QUICKEST scheme in smooth

regions, as this is the lowest order method in which the leading truncation error is
dissipative but not diffusive. QUICKEST s phase error is relatively low, but
overshoots or undershoots can be excited by the unlimited scheme near discon-
tinuities, and short-wavelength resolution would, of course, be limited to third order.
A more sophisticated scheme is therefore devised in which monotonicity is

Uparanteed by a universal limiter which can be applied to any order of accuracy.
propriate degrees of higher order resolution are automatically introduced locally,

using adaptive stencil expansion controlled by monitoring, local (absolute) gradient
and curvature of the convected variable. Potential clipping of narrow extrema is

avoided by automatic relaxation of the limiter constraints in local regions based on
pattern-recognition decisions of an adaptive discriminator. By judicious choice of
threshold constants, the overall method can produce extremely accurate results on a
coarse mesh at relatively little additional cost above that of the base third-order
scheme. The same principles can be applied to multidimensional flows and non-
linear systems. Work is proceeding on these applications.
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FIGURE 1 Locally monotonic behaviour across a control-volume cell in terms

of normalized variables.
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FIGURE 2 Universal limiter constraints in the normalized-variable diagram.
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FIGURE 3 Normalized variable diagrams for Superbee (heavy lines), Minmod

(dashed), and MUSCL.

FIGURE 4 Exact solution for the four scalar test profiles considered.
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FIGURE5 First-order upwind results compared with exact solution.

FIGURE6 Lax-Wendroff results compared with exact solution.
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FIGURE7 Second-order upwind results compared with exact solution.

FIGURE8 Crank-Nicolson results compared with exact solution.
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FIGURE9 Linear-finite-element results compared with exact solution.

FIGURE10 Third-order upwind (QUICKEST)results compared with exact

solution.
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FIGURE11 Fourth-order central results compared with exact solution.

FIGURE12 ULTIMATEQUICKESTresults compared with exact solution.
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FIGURE 13 Results using MUSCL compared with exact solution.
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FIGURE 14 Unlimited ninth-order upwinding.

19



i||

FIGURE 15 ULTIMATE ninth-order upwinding.

FIGURE 16

(a) (b)

Action of the discriminator. (a) Limiter switched on.

(b) Limiter switched off at three central points.
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FIGURE 17
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Schematic of order-switching strategy in terms of CURVAV

and GRAD.
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FIGURE 18 Third/higher-order adaptive scheme with discriminator.

(a) Computed results. (b) Distribution of GRAD relative toTHG.

(c) Distribution of CURVAV relative to THC1 and THC2.

(d) Order of the algorithm to be used locally in next time-step.
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